Algebraic Multigrid Methods for Maxwell Equations

Joachim Schöberl
FWF Start - Project “hp-FEM”
Johannes Kepler University Linz, Austria

Stefan Reitzinger
CST GmbH
Darmstadt, Germany

Contents:

1. Maxwell Equations and Finite Elements

2. Discrete Differential Operators

3. Explicit Kernel Smoothers

4. Algebraic Coarsening Strategy

5. Numerical Examples and Applications
Equations of Magnetostatics

Given:

\[j \text{ .. current density s.t. } \text{div} \, j = 0 \]

Compute:

\[B \text{ .. magnetic flux density} \]
\[H \text{ .. magnetic field intensity} \]

such that

\[B = \mu H \quad \text{div} \, B = 0 \quad \text{curl} \, H = j \]

with the boundary conditions

either \[B \cdot n = 0 \quad \text{or} \quad H \times n = 0 \]
Coil on a high permeable core
Vector potential formulation

Since $\text{div } B = 0$ (plus compatibility conditions), there exists a vector potential A such that

$$B = \text{curl } A$$

Combining the equations above gives us

$$\text{curl } \mu^{-1} \text{curl } A = j$$

plus boundary conditions
Vector potential formulation

Since $\text{div} \, B = 0$ (plus compatibility conditions), there exists a vector potential A such that

$$B = \text{curl} \, A$$

Combining the equations above gives us

$$\text{curl} \, \mu^{-1} \text{curl} \, A = j$$

plus boundary conditions

The weak formulation is to find $A \in V := H(\text{curl})$ such that

$$\int \mu^{-1} \text{curl} \, A \, \text{curl} \, v \, dx = \int j \, v \, dx \quad \forall \, v \in V.$$
Vector potential formulation

Since $\text{div} \, B = 0$ (plus compatibility conditions), there exists a vector potential A such that

$$B = \text{curl} \, A$$

Combining the equations above gives us

$$\text{curl} \, \mu^{-1} \text{curl} \, A = j$$

plus boundary conditions

The weak formulation is to find $A \in V := H(\text{curl})$ such that

$$\int \mu^{-1} \text{curl} \, A \, \text{curl} \, v \, dx = \int j \, v \, dx \quad \forall \, v \in V.$$

Problem: A is defined up to a $\nabla \varphi$!
Gauging possibilities

1. Do not gauge, work on factor space $H(\text{curl})/\nabla H^1$.

 Fine, if error estimates etc. only depend on $\text{curl}A$
Gauging possibilities

1. Do not gauge, work on factor space $H(\text{curl})/\nabla H^1$.
 Fine, if error estimates etc. only depend on $\text{curl}A$

2. Gauging by regularization. Add small L_2-term:

 $$
 \int \mu^{-1} \text{curl} A \text{curl} v \, dx + \varepsilon \int A v \, dx = \int j v \, dx \quad \forall v \in V.
 $$

 Fine, if error estimates etc. do not depend on ε.

Gauging possibilities

1. Do not gauge, work on factor space $H(\text{curl})/\nabla H^1$.
 Fine, if error estimates etc. only depend on $\text{curl} A$

2. Gauging by regularization. Add small L_2-term:
 \[
 \int \mu^{-1} \text{curl} A \text{curl} v \, dx + \varepsilon \int A v \, dx = \int j v \, dx \quad \forall v \in V.
 \]
 Fine, if error estimates etc. do not depend on ε.

3. Gauging by explicit constraints, i.e., solve the mixed problem:
 \[
 \int \mu^{-1} \text{curl} A \text{curl} v \, dx + \int v \nabla \phi \, dx = \int j v \, dx \quad \forall v \in H(\text{curl})
 \]
 \[
 \int A \nabla \psi \, dx = 0 \quad \forall \psi \in H^1
 \]
 Fine, if you like saddle point problems.
The Challenge

Maxwell problems are typically

1. Real three dimensional problems
2. Very ill conditioned (two scales)
3. Have large jumps in the coefficients (permeability $\mu_{rel} = 1 \ldots 10^4$, conductivity σ)
4. Have complicated and nasty geometry (thin shields)
5. Show thin boundary layers (Eddy current problems)
6. Are indefinite for high frequencies (not discussed here)
The Challenge

Maxwell problems are typically

1. Real three dimensional problems

2. Very ill conditioned (two scales)

3. Have large jumps in the coefficients (permeability \(\mu_{rel} = 1 \ldots 10^4 \), conductivity \(\sigma \))

4. Have complicated and nasty geometry (thin shields)

5. Show thin boundary layers (Eddy current problems)

6. Are indefinite for high frequencies (not discussed here)

The equation solver is a big challenge.

Black box iterative solvers are a mess (SSOR, Incomplete Cholesky, standard AMG, ...)

Joachim Schöberl
Maxwell equations and finite elements
Function Spaces

\[L_2 := \{ v : \int v^2 \, dx < \infty \} \]
\[H^1 := \{ v \in L_2 : \text{grad} \, v \in [L_2]^3 \} \]
Function Spaces

\[L_2 := \{ v : \int v^2 \, dx < \infty \} \]

\[H^1 := \{ v \in L_2 : \text{grad} \, v \in [L_2]^3 \} \]

\[H(\text{curl}) := \{ v \in [L_2]^3 : \text{curl} \, v \in [L_2]^3 \} \]

\[H(\text{div}) := \{ v \in [L_2]^3 : \text{div} \, v \in L_2 \} \]
Function Spaces

\[L_2 := \{ v : \int v^2 \, dx < \infty \} \]
\[H^1 := \{ v \in L_2 : \text{grad} \, v \in [L_2]^3 \} \]
\[H(\text{curl}) := \{ v \in [L_2]^3 : \text{curl} \, v \in [L_2]^3 \} \]
\[H(\text{div}) := \{ v \in [L_2]^3 : \text{div} \, v \in L_2 \} \]

These spaces form a complete sequence:

\[H^1 \xrightarrow{\text{grad}} H(\text{curl}) \xrightarrow{\text{curl}} H(\text{div}) \xrightarrow{\text{div}} L_2 \]

There is

\[\text{grad} \, H^1 = \{ v \in H(\text{curl}) : \text{curl} \, v = 0 \} \]
\[\text{curl} \, H(\text{curl}) = \{ v \in H(\text{div}) : \text{div} \, v = 0 \} \]
The mesh topology

Tetrahedral mesh with

set of vertices \(\mathcal{V} = \{ V_i \} \),
set of edges \(\mathcal{E} = \{ E_{ij} \} \),
set of faces \(\mathcal{F} = \{ F_{ijk} \} \),
set of cells \(\mathcal{C} = \{ C_{ijkl} \} \).

These entities are used to define the finite element degrees of freedom (= evaluation functionals):

- **Vertex values**: \(v(V_i) \)
- **Edge integrals**: \(\int_{E_{ij}} \tau \cdot v \, ds \)
- **Face integrals**: \(\int_{F_{ijk}} \nu \cdot v \, ds \)
- **Cell integrals**: \(\int_{C_{ijkl}} v \, dx \)
The de Rham complex

\[H^1 \xrightarrow{\text{grad}} H(\text{curl}) \xrightarrow{\text{curl}} H(\text{div}) \xrightarrow{\text{div}} L^2 \]

\[V^v \xrightarrow{\text{grad}} V^e \xrightarrow{\text{curl}} V^f \xrightarrow{\text{div}} V^c \]

Nédélec \quad Raviart-Thomas
The de Rham complex

$$
\begin{array}{cccc}
H^1 & \xrightarrow{\text{grad}} & H(\text{curl}) & \xrightarrow{\text{curl}} & H(\text{div}) & \xrightarrow{\text{div}} & L^2 \\
\cup & \cup & \cup & \cup & \cup & \cup & \\
V^v & \xrightarrow{\text{grad}} & V^e & \xrightarrow{\text{curl}} & V^f & \xrightarrow{\text{div}} & V^c
\end{array}
$$

- basic properties: Bossavit, Hiptmair
- a-priori estimates: Monk, Vardapetyan-Demkowicz, Nicaise, Schöberl
- Eigenvalue problems: Kikuchi, Boffi, Demkowicz-Monk-Schwab-Vardapetyan
- Multigrid and domain decomposition: Arnold-Falk-Winther, Hiptmair, Toselli
- A posteriori error estimates: Beck-Hiptmair-Hoppe-Wohlmuth
The de Rham complex

\[
\begin{array}{c}
H^1 \xrightarrow{\text{grad}} H(\text{curl}) \xrightarrow{\text{curl}} H(\text{div}) \xrightarrow{\text{div}} L^2 \\
\downarrow \Pi^v \quad \downarrow \Pi^e \quad \downarrow \Pi^f \quad \downarrow \Pi^c \\
V^v \xrightarrow{\text{grad}} V^e \xrightarrow{\text{curl}} V^f \xrightarrow{\text{div}} V^c
\end{array}
\]

Nédélec \quad Raviart-Thomas

The interpolation operators fulfill the commuting diagram properties

\[
\text{grad} \Pi^v = \Pi^e \text{grad} \quad \text{curl} \Pi^e = \Pi^f \text{curl} \quad \text{div} \Pi^f = \Pi^c \text{div}
\]
Discrete Gradient Operator

Take $w \in V^v \subset H^1$. Its expansion in the canonical basis (hat functions) is

$$w(x) = \sum_{V_i \in \mathcal{V}} w_i \varphi_i^v(x) \quad \text{with} \quad w_i = w(V_i)$$

The same for $v \in V^e \subset H(\text{curl})$:

$$v(x) = \sum_{E_{ij} \in \mathcal{E}} v_{ij} \varphi_{ij}^e(x) \quad \text{with} \quad v_{ij} = \int_{V_i}^{V_j} \tau \cdot v \, ds$$
Discrete Gradient Operator

Take $w \in V^v \subset H^1$. Its expansion in the canonical basis (hat functions) is

$$w(x) = \sum_{V_i \in V} w_i \varphi_i^v(x) \quad \text{with} \quad w_i = w(V_i)$$

The same for $v \in V^e \subset H(\text{curl})$:

$$v(x) = \sum_{E_{ij} \in E} v_{ij} \varphi_{ij}^e(x) \quad \text{with} \quad v_{ij} = \int_{V_i}^{V_j} \tau \cdot v \, ds$$

Now, for $v = \nabla w$ there is

$$v_{ij} = \int_{V_i}^{V_j} \tau \cdot \nabla w \, ds = w(V_j) - w(V_i) = w_j - w_i$$
Discrete Gradient Operator

Take \(w \in V^v \subset H^1 \). Its expansion in the canonical basis (hat functions) is

\[
w(x) = \sum_{V_i \in V} w_i \phi^v_i(x) \quad \text{with} \quad w_i = w(V_i)
\]

The same for \(v \in V^e \subset H(\text{curl}) \):

\[
v(x) = \sum_{E_{ij} \in \mathcal{E}} v_{ij} \phi^e_{ij}(x) \quad \text{with} \quad v_{ij} = \int_{V_i}^{V_j} \tau \cdot v \, ds
\]

Now, for \(v = \nabla w \) there is

\[
v_{ij} = \int_{V_i}^{V_j} \tau \cdot \nabla w \, ds = w(V_j) - w(V_i) = w_j - w_i
\]

With a matrix \(B_{\text{grad}} \in \mathbb{R}^{N_e \times N_v} \) we write \(v = B_{\text{grad}} w \).

\[
[B_{\text{grad}}]_{E_{ij},V_k} = \begin{cases}
1 & \text{for } k = j \\
-1 & \text{for } k = i \\
0 & \text{else}
\end{cases}
\]
We continue with $q \in V^f \subset H(\text{div})$:

$$q(x) = \sum_{F_{ijk} \in \mathcal{F}} q_{ijk} \varphi_{ijk}^f(x) \quad \text{with} \quad q_{ijk} = \int_{F_{ijk}} \nu \cdot q \, ds$$
Discrete Curl Operator

We continue with $q \in V^f \subset H(\text{div})$:

$$q(x) = \sum_{F_{ijk} \in \mathcal{F}} q_{ijk} \varphi_{ijk}^f(x) \quad \text{with} \quad q_{ijk} = \int_{F_{ijk}} \nu \cdot q \, ds$$

For $q = \text{curl} \, v$, Stokes’ Theorem gives:

$$q_{ijk} = \int_{F_{ijk}} \nu \cdot \text{curl} \, v \, ds = \int_{\partial F_{ijk}} \tau \cdot v \, ds$$

$$= \int_{E_{ij}} + \int_{E_{jk}} + \int_{E_{ki}} \tau \cdot v \, ds = v_{ij} + v_{jk} + v_{ki}$$
Discrete Curl Operator

We continue with $q \in V^f \subset H(\text{div})$:

$$q(x) = \sum_{F_{ijk} \in \mathcal{F}} q_{ijk} \varphi_{ijk}^f(x) \quad \text{with} \quad q_{ijk} = \int_{F_{ijk}} \nu \cdot q \, ds$$

For $q = \text{curl} \, \nu$, Stokes’ Theorem gives:

$$q_{ijk} = \int_{F_{ijk}} \nu \cdot \text{curl} \, \nu \, ds = \int_{\partial F_{ijk}} \tau \cdot \nu \, ds$$

$$= \int_{E_{ij}} + \int_{E_{jk}} + \int_{E_{ki}} \tau \cdot \nu \, ds = v_{ij} + v_{jk} + v_{ki}$$

With a matrix $B_{\text{curl}} \in \mathbb{R}^{N_f \times N_e}$ we write $q = B_{\text{curl}} \nu$.

$$[B_{\text{curl}}]_{F_{ijk}, E_{lm}} = \begin{cases}
1 & \text{for } ij = lm \text{ or } jk = lm \text{ or } ki = lm \\
-1 & \text{for } ij = ml \text{ or } jk = ml \text{ or } ki = ml \\
0 & \text{else} \end{cases}$$
Discrete Div Operator

And, finally $s \in V^c \subset L_2$:

$$s(x) = \sum_{C_{ijkl} \in \mathcal{C}} s_{ijkl} \varphi_{ijkl}^c(x) \quad \text{with} \quad s_{ijkl} = \int_{C_{ijkl}} s \, dx$$
Discrete Div Operator

And, finally $s \in V^c \subset L_2$:

$$s(x) = \sum_{C_{ijkl} \in \mathcal{C}} s_{ijkl} \varphi_{ijkl}^c(x) \quad \text{with} \quad s_{ijkl} = \int_{C_{ijkl}} s \, dx$$

For $s = \text{div} \, q$, Gauss' Theorem gives:

$$s_{ijkl} = \int_{C_{ijkl}} \text{div} \, q \, ds = \int_{\partial C_{ijkl}} \nu \cdot q \, ds$$

$$= \int_{F_{ijk}} + \int_{F_{lij}} + \int_{F_{kli}} + \int_{F_{jkl}} \nu \cdot q \, ds = q_{ijk} + v_{lij} + v_{kli} + v_{jkl}$$
Discrete Div Operator

And, finally $s \in V^e \subset L_2$:

$$s(x) = \sum_{C_{ijkl} \in \mathcal{C}} s_{ijkl} \varphi_{ijkl}^c(x) \quad \text{with} \quad s_{ijkl} = \int_{C_{ijkl}} s \, dx$$

For $s = \text{div} \, q$, Gauss’ Theorem gives:

$$s_{ijkl} = \int_{C_{ijkl}} \text{div} \, q \, ds = \int_{\partial C_{ijkl}} \nu \cdot q \, ds$$

$$= \int_{F_{ijk}} + \int_{F_{lij}} + \int_{F_{kli}} + \int_{F_{jkl}} \nu \cdot q \, ds = q_{ijk} + v_{lij} + v_{kli} + v_{jkl}$$

With a matrix $B_{\text{div}} \in \mathbb{R}^{N_e \times N_f}$ we write $s = B_{\text{div}}q$.
Mass matrices

For all spaces V^v, V^e, V^f, V^c, we define the Gramian matrices (mass matrices)

\[
[M^v_\lambda]_{V, V'} = \int \lambda(x) \varphi^v_V(x) \varphi^v_{V'}(x) \, dx
\]

\[
[M^e_\lambda]_{E, E'} = \int \lambda(x) \varphi^e_E(x) \varphi^e_{E'}(x) \, dx
\]

\[
[M^f_\lambda]_{F, F'} = \int \lambda(x) \varphi^f_F(x) \varphi^f_{F'}(x) \, dx
\]

\[
[M^c_\lambda]_{C, C'} = \int \lambda(x) \varphi^c_C(x) \varphi^c_{C'}(x) \, dx
\]

For all these matrices, diagonal preconditioning is optimal:

\[
\text{cond}((\text{diag}[M])^{-1}M) \simeq 1
\]

Some of the constants depend on the maximal angle of the elements.
System matrices

Indeed, we want to discretise variational forms such as

\[\int \nu \text{curl } u \text{ curl } v \, dx + \int \sigma uv \, dx \]

With the discrete differential operator \(B_{\text{curl}} \) and the mass matrices, the system matrix is

\[A^e = B_{\text{curl}}^T M^f_{\nu} B_{\text{curl}} + M^e_{\sigma} \]
System matrices

Indeed, we want to discretize variational forms such as

\[\int \nu \text{curl} \ u \ \text{curl} \ v \ dx + \int \sigma uv \ dx \]

With the discrete differential operator \(B_{\text{curl}} \) and the mass matrices, the system matrix is

\[A^e = B_{\text{curl}}^T M_\nu B_{\text{curl}} + M_\sigma \]

Remark: For all matrices there is a lumped approximation

\[A^v \simeq B_{\text{grad}}^T \text{diag}[M^e] B_{\text{grad}} + \text{diag}[M^v] \]

This approximation is an M-matrix:

\[u^T A^v u = \sum_{E_{ij}} M_{ij}^e (u_i - u_j)^2 + \sum_{V_i} M_i^v u_i^2 \]

Can be used to control coarsening
Smoothing iterations

Consider the H^1 elliptic form
\[\int \nabla u \nabla v \, dx + \varepsilon \int uv \, dx, \]
leading to the matrix
\[A^v = B^T_{\text{grad}} M^e_{1} B_{\text{grad}} + M^v_{\varepsilon} \]
This matrix has one small eigenvalue, the corresponding eigenvector is the constant.

Diagonal preconditioning with $C = \text{diag} A^v$ is not robust
\[\text{cond}\{C^{-1} A^v\} \simeq \varepsilon^{-1} h^{-2} \]
The problem is the kernel space. Define one more \(B \):

\[
B_{id} \in \mathbb{R}^{N_v \times 1} \quad [B_{id}]_{V,1} = 1
\]

Thus

\[
\text{kernel}(B_{\text{grad}}) = \text{range}(B_{id})
\]

Knowing the kernel explicitly, we can improve the preconditioner on the kernel:

\[
C^{-1} = \text{diag}(A^v)^{-1} + B_{id}(\text{diag}(B_{id}^T A^v B_{id}))^{-1} B_{id}^T
\]

The new preconditioner is robust in \(\varepsilon \):

\[
\text{cond}\{ C^{-1} A^v \} \sim h^{-2}
\]
Hiptmair’s smoother

The problem is (in principle) the same for $H(\text{curl})$:

$$A^e = B^T_{\text{curl}}M_{\nu}B_{\text{curl}} + M^e_{\sigma}$$

The leading term has a \textit{large} kernel. Thanks to the complete sequence property it is known explicitly:

$$\text{kernel}(B_{\text{curl}}) = \text{range}(B_{\text{grad}})$$

Thus, Hiptmair added additional smoothing steps in the kernel:

$$C^{-1} = \text{diag}(A^e)^{-1} + B_{\text{grad}}(\text{diag}(B^T_{\text{grad}}A^eB_{\text{grad}}))^{-1}B^T_{\text{grad}}$$
Hiptmair’s smoother

The problem is (in principle) the same for $H(\text{curl})$:

$$A^e = B_{\text{curl}}^T M^f B_{\text{curl}} + M^e_\sigma$$

The leading term has a large kernel. Thanks to the complete sequence property it is known explicitely:

$$\text{kernel}(B_{\text{curl}}) = \text{range}(B_{\text{grad}})$$

Thus, Hiptmair added additional smoothing steps in the kernel:

$$C^{-1} = \text{diag}(A^e)^{-1} + B_{\text{grad}} \left(\text{diag}(B_{\text{grad}}^T A^e B_{\text{grad}}) \right)^{-1} B_{\text{grad}}^T$$

The additional problem is of Poisson type:

$$B_{\text{grad}}^T A^e B_{\text{grad}} = B_{\text{grad}}^T B_{\text{curl}}^T M^f B_{\text{curl}} B_{\text{grad}} + B_{\text{grad}}^T M^e_\sigma B_{\text{grad}} = 0$$
Algebraic coarsening based on Agglomeration

Defined by the mapping
\[\text{Ind}(.) : \text{Vertex} \rightarrow \text{Cluster} \]

Allows to define the full coarse grid topology:

- \(E_{IJ} \) is a coarse grid edge if and only if there are fine grid vertices \(i \) and \(j \) s.t.:
 \[I = \text{Ind}(i), \quad J = \text{Ind}(j), \quad E_{ij} \text{ is a fine grid edge} \]

- \(F_{IJK} \) is a coarse grid face if and only if there are fine grid vertices \(i, j, \) and \(k \) s.t.:
 \[I = \text{Ind}(i), \quad J = \text{Ind}(j), \quad K = \text{Ind}(k), \quad F_{ijk} \text{ is a fine grid face} \]
Coarse grid spaces

Vertex coarse grid space (constant in cluster):

\[V_{\text{coarse}}^v = \{ v \in V^v : v(V^i) = v(V^{i'}) \text{ for } \text{Ind}(i) = \text{Ind}(i') \}, \]

the prolongation matrix \(P^v \in \mathbb{R}^{N_v \times N_{v,\text{coarse}}} \) is

\[
[P^v]_{i,I} = \begin{cases}
1 & \text{if } I = \text{Ind}(i) \\
0 & \text{else}
\end{cases}
\]
Coarse grid spaces

Vertex coarse grid space (constant in cluster):

\[V^v_{\text{coarse}} = \{ v \in V^v : v(V^i) = v(V^{i'}) \text{ for } \text{Ind}(i) = \text{Ind}(i') \}, \]

the prolongation matrix \(P^v \in \mathbb{R}^{N_v \times N_v,\text{coarse}} \) is

\[
[P^v]_{i,I} = \begin{cases}
1 & \text{if } I = \text{Ind}(i) \\
0 & \text{else}
\end{cases}
\]

Edge coarse grid space:

\[V^e_{\text{coarse}} = \{ v \in V^e : \int_{E_{ij}} \tau v \, ds = \int_{E_{i'j'}} \tau v \, ds \text{ for } \text{Ind}(i) = \text{Ind}(i'), \text{Ind}(j) = \text{Ind}(j') \}, \]

the prolongation matrix \(P^e \in \mathbb{R}^{N_e \times N_e,\text{coarse}} \) is

\[
[P^e]_{ij,IJ} = \begin{cases}
1 & \text{if } I = \text{Ind}(i) \text{ and } J = \text{Ind}(j) \\
-1 & \text{if } I = \text{Ind}(j) \text{ and } J = \text{Ind}(i) \\
0 & \text{else}
\end{cases}
\]
Coarse grid differential operators

Gradients of coarse grid functions in $V^v_{coarse} \subset V^v$:

Coarse vertex basis function

Its gradient in V^e

Coarse edge basis function
Gradients of coarse grid functions in $V_{coarse}^v \subset V^v$:

Coarse vertex basis function

Its gradient in V^e

Coarse edge basis function

There holds $\text{grad} V_{coarse}^v \subset V_{coarse}^e$, i.e. for any w_{coarse}^v, there exists an unique v_{coarse}^e such that

$$B_{\text{grad}} P^v w_{coarse}^v = P^e v_{coarse}^e.$$

This allows the definition of B_{grad}^{coarse}.

Coarse grid differential operators
The 2-Level de Rham diagram:

$$
\begin{align*}
V^v & \xrightarrow{B_{\text{grad}}} V^e & B_{\text{curl}} & V^f & B_{\text{div}} & V^c \\
\downarrow \Pi^v & \downarrow \Pi^e & \downarrow \Pi^f & \downarrow \Pi^c
\end{align*}
$$

$$
\begin{align*}
V_{\text{coarse}}^v & \xrightarrow{B_{\text{grad}}} V_{\text{coarse}}^e & B_{\text{curl}} & V_{\text{coarse}}^f & B_{\text{div}} & V_{\text{coarse}}^c
\end{align*}
$$

1. The algebraically constructed coarse spaces form a complete sequence.

2. There are commuting interpolation operators

3. The interpolation operators are L_2 bounded

4. Statement 2 and 3 imply that Π^v, Π^e, and Π^f are bounded in H^1, $H(\text{curl})$, and $H(\text{div})$ -norms, respectively. This is essential for the two-level analysis [Reitzinger-Sch., 2001].
Model Problem

\[\Omega = (0,1)^3, \quad V = H_0(\text{curl}), \quad f = (1,0,0), \]

Variational form:

\[\int \text{curl} \, u, \text{curl} \, v \, dx + 10^{-3} \int uv \, dx = \int fv \, dx \]

V-11 cycle:

<table>
<thead>
<tr>
<th>(N_h^c)</th>
<th>setup (sec)</th>
<th>solver (sec)</th>
<th>iteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>4184</td>
<td>0.15</td>
<td>0.30</td>
<td>12</td>
</tr>
<tr>
<td>31024</td>
<td>1.32</td>
<td>6.29</td>
<td>17</td>
</tr>
<tr>
<td>238688</td>
<td>11.39</td>
<td>67.98</td>
<td>21</td>
</tr>
</tbody>
</table>

Variable V cycle:

<table>
<thead>
<tr>
<th>(N_h^c)</th>
<th>setup (sec)</th>
<th>solver (sec)</th>
<th>iteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>4184</td>
<td>0.15</td>
<td>0.31</td>
<td>11</td>
</tr>
<tr>
<td>31024</td>
<td>1.32</td>
<td>6.21</td>
<td>15</td>
</tr>
<tr>
<td>238688</td>
<td>11.39</td>
<td>63.93</td>
<td>17</td>
</tr>
</tbody>
</table>

Computation with Stefan Reitzinger’s AMG code Pebbles, CPU = PIII 1 GHz
TEAM 20 Benchmark problem

Coil and Iron core, small air gap.

Unknovns: 240E3
Iterations: 26
Solution time: 90 sec

by Manfred Kaltenbacher,
University Erlangen, Germany
Using the code Pebbles
Simulation of a Transformer

Project with EBG Transformatorenbau
Three phase transformer

- prescribed current sources in coils
- main flux though high permeable core
- flux penetrating the casing causes eddy currents
- thin shields collecting stray fluxes

Model:
- Time harmonic, low frequency
- Nonlinear terms due to saturation in casing
Magnetic flux density
Loss density in pressing plates
Eddy current density
Some remarks

• The problems have 2 coefficients. Which one should drive the coarsening? Recursive AMG!

• Clustering is based on diagonal entries of the mass matrices of derivatives.

• Are better coarsening strategies possible?